3 Modelo de Juárez-Badillo (1999b)

3.1 Introdução

Juárez-Badillo (1999b) propôs a aplicação de equações gerais para modelagem da liquefação estática de solos com base no chamado "princípio da proporcionalidade natural pelo qual os fenômenos naturais são simples e ordenados (Juárez-Badillo, 1985)". Estas equações gerais, como será constatado pelo leitor a seguir, não constituem propriamente um modelo constitutivo, mas apenas um ajuste de curvas para a trajetória de tensão imposta pelos ensaios de compressão triaxial convencionais.

3.2 Equações gerais para a região pré-pico

3.2.1 Função de sensibilidade

Considere as condições do ensaio de compressão triaxial convencional onde $\sigma_{co} = \sigma_3$ representa a tensão inicial de consolidação, $\sigma_1 > \sigma_2 = \sigma_3$ as tensões principais e $q = \sigma_1 - \sigma_3$ a máxima diferença entre tensões principais. Se $\varepsilon_a \acute{e}$ a deformação axial de Cauchy, então a deformação axial natural é definida por ln $(1 + \varepsilon_a)$ e a deformação natural de desvio na direção axial e_a pode ser escrita como

$$e_a = \ln(1 + \varepsilon_a) - \varepsilon_v / 3 \tag{Eq. 3.1}$$

onde ε_v é a deformação volumétrica natural (em ensaios não drenados $\varepsilon_v = 0$). No desenvolvimento do modelo de Juárez-Badillo (1999b) as deformações axiais de compressão ε_a e e_a foram consideradas negativas. Pelo princípio da proporcionalidade natural, proposto por Juárez-Badillo (1985), a relação entre as variáveis $q = \sigma_1 - \sigma_3$ e e_a deve ser feita através de funções matemáticas simples, definidas no domínio $[0, \infty)$, chamadas por aquele autor de funções próprias. Se considerarmos que e_a varia de 0 a ∞ enquanto $q = \sigma_1 - \sigma_3$ varia de 0 a um valor final na ruptura $(\sigma_1 - \sigma_3)_f$ então a função

$$f^{s}(q) = \frac{1}{(\sigma_{1} - \sigma_{3})} - \frac{1}{(\sigma_{1} - \sigma_{3})_{f}}$$
 (Eq. 3.2)

pode ser considerada uma função própria, pois à medida que $f^{s}(q)$ variar de infinito, para q = 0, a zero, para $q = (\sigma_1 - \sigma_3)_f$, então a função própria e_a variará de zero até infinito.

No princípio da proporcionalidade natural a relação entre as funções próprias e_a e $f^s(q)$ deve obedecer à relação geral

$$\frac{de_a}{e_a} = -v_p \frac{df(q)}{f(q)}$$
(Eq. 3.3)

resultando, por integração,

$$e_a f(q)^{v_p} = cte \tag{Eq. 3.4}$$

onde v_p é uma constante de proporcionalidade denominada de expoente de cisalhamento. A equação (3.4) é referida como *Equação Geral de Proporcionalidade Natural*.

Substituindo-se a equação (3.2) em (3.4) obtém-se então

$$e_{a}\left[\frac{\left(\sigma_{1}-\sigma_{3}\right)_{f}}{\sigma_{1}-\sigma_{3}}-1\right]^{\nu_{p}}=cte=e_{a}^{*}$$
(Eq. 3.5)

onde e_a^* corresponde ao valor particular da deformação e_a para $\sigma_1 - \sigma_3 = 1/2(\sigma_1 - \sigma_3)_f$.

Assim, é possível reescrever-se a equação (3.5) como

$$\frac{e_a}{e_a^*} = \left[\frac{(\sigma_1 - \sigma_3)_f}{\sigma_1 - \sigma_3} - 1\right]^{-\nu_p}$$
(Eq. 3.6)

ou

$$y_{S}^{e} = \frac{\sigma_{1} - \sigma_{3}}{(\sigma_{1} - \sigma_{3})_{f}} = \left[1 + \left(\frac{e_{a}}{e_{a}^{*}}\right)^{-\frac{1}{v_{p}}}\right]^{-1}$$
 (Eq. 3.7)

ou também como

$$\sigma_{1} - \sigma_{3} = (\sigma_{1} - \sigma_{3})_{f} y_{s}^{e} = (\sigma_{1} - \sigma_{3})_{f} \left[1 + \left(\frac{e_{a}}{e_{a}^{*}}\right)^{-\frac{1}{v_{p}}} \right]^{-1}$$
(Eq. 3.8)

A relação tensão-deformação expressa pela equação (3.8) constitui a equação geral pré-pico do modelo, expressa através da função de sensibilidade y_s^e representada na figura 3.1 para vários valores da constante v_p .

Figura 3.1 Função de sensibilidade em função da deformação natural de desvio na direção axial.

A função de sensibilidade pode também ser escrita em termos da deformação cisalhante natural η_c assumida aproximadamente igual à distorção máxima $\eta_c = \varepsilon_1 - \varepsilon_3$,

$$y_{s}^{\eta} = \frac{\sigma_{1} - \sigma_{3}}{(\sigma_{1} - \sigma_{3})_{f}} = \left[1 + \left(\frac{\eta_{c}}{\eta_{c}^{*}}\right)^{-\frac{1}{\nu_{s}}}\right]^{-1}$$
(Eq. 3.9)

ou

$$\sigma_{1} - \sigma_{3} = (\sigma_{1} - \sigma_{3})_{f} y_{s}^{\eta} = (\sigma_{1} - \sigma_{3})_{f} \left[1 + \left(\frac{\eta_{c}}{\eta_{c}^{*}}\right)^{-\frac{1}{\nu_{s}}} \right]^{-1}$$
(Eq. 3.10)

onde

$$\eta_c^* = \eta_c$$
 para $\sigma_1 - \sigma_3 = 1/2(\sigma_1 - \sigma_3)_f$

A variação da função de sensibilidade y_s^{η} para diferentes valores da constante v_s está graficamente representada na figura 3.2.

Figura 3.2 Função de sensibilidade em função da deformação cisalhante natural.

3.2.2 Função normal

Juárez-Badillo (1994, 1995) também definiu, como aplicação indireta do princípio da proporcionalidade natural, uma relação entre a deformação cisalhante natural η_c e a tensão $q = \sigma_1 - \sigma_3$ matematicamente expressa por

$$d\eta_{c} = -\mu_{c} \frac{d \frac{\left(\sigma_{1} - \sigma_{3}\right)}{2\sigma_{co}}}{\left[1 - \frac{\sigma_{1} - \sigma_{3}}{\left(\sigma_{1} - \sigma_{3}\right)_{f}}\right]^{\nu_{N}}}$$
(Eq. 3.11)

onde μ_c é o coeficiente cisalhante e ν_N o expoente cisalhante pré-pico, ambos considerados como propriedades do material.

Integrando-se a equação 3.11 para valores de $\nu_{\rm N} \ge 0$, obtém-se:

a) para $v_N \neq 1$

$$e_{a} = -\frac{1}{3}\mu_{c}x_{f} \frac{1}{\nu_{N} - 1} \left[\frac{1}{\left(1 - \frac{x}{x_{f}}\right)^{\nu_{N} - 1}} - 1 \right]$$
(Eq. 3.12)

onde $x = (\sigma_1 - \sigma_3) / \sigma_{co}$ e x_f seu valor final para $e_a = \infty$

A equação também pode ser reescrita como

$$\sigma_{1} - \sigma_{3} = (\sigma_{1} - \sigma_{3})_{f} \left\{ 1 - \left[1 + (1 - \nu_{N}) \frac{3e_{a}\sigma_{co}}{\mu_{c}(\sigma_{1} - \sigma_{3})_{f}} \right]^{\frac{1}{1 - \nu_{N}}} \right\}$$
(Eq. 3.13)

o que permite a definição da função normal y_N por

$$y_{N} = \frac{x}{x_{f}} = 1 - \left[1 + (1 - v_{N})\frac{3e_{a}}{\mu_{c}x_{f}}\right]^{\frac{1}{1 - v_{N}}}$$
(Eq. 3.14)

b) para $v_N = 1$

$$e_a = \frac{1}{3}\mu_c x_f \ln\left(1 - \frac{x}{x_f}\right)$$
(Eq. 3.15)

$$\sigma_1 - \sigma_3 = (\sigma_1 - \sigma_3)_f \left\{ 1 - \exp\left(\frac{3e_a \sigma_{co}}{\mu_c (\sigma_1 - \sigma_3)_f}\right) \right\}$$
(Eq. 3.16)

e a correspondente função normal y_N

$$y_N = \frac{x}{x_f} = 1 - \exp\left(\frac{3e_a}{\mu_c x_f}\right)$$
 (Eq. 3.17)

A figura 3.3 mostra a variação da função normal para valores de $v_N \ge 0$.

Figura 3.3 Função normal y_N para $v_N \ge 0$.

3.2.3 Função sensibilidade invertida

Utilizando raciocínio similar, considere agora que $\sigma_1 - \sigma_3$ varia de 0 a ∞ à medida que e_a varia de 0 a um valor final e_{af} . Uma função própria definida no intervalo $[0, \infty)$ pode então ser escrita como

$$f'(e_a) = \frac{1}{e_a} - \frac{1}{e_{af}}$$
 (Eq. 3.18)

notando-se facilmente que o valor de $f^{I}(e_{a})$ varia de infinito, para $e_{a} = 0$, a zero, para $e_{a} = e_{af}$.

Novamente, de acordo com o princípio da proporcionalidade natural (Juárez-Badillo, 1985), tem-se a relação

$$(\sigma_1 - \sigma_3) f^I (e_a)^{v_I} = cte$$
(Eq. 3.19)

Substituindo-se a equação (3.18) em (3.19) obtém-se então

$$\left(\sigma_1 - \sigma_3\right) \left(\frac{e_{af}}{\varepsilon_a} - 1\right)^{\frac{1}{\nu_I}} = cte = \left(\sigma_1 - \sigma_3\right)^*$$
(Eq. 3.20)

onde v_1 é uma constante do material e $(\sigma_1 - \sigma_3)^*$ corresponde ao valor de $(\sigma_1 - \sigma_3)$ para $e_a = 1/2 e_{af}$.

Uma função de sensibilidade invertida pode ser definida como

$$y_{I} = \frac{\sigma_{1} - \sigma_{3}}{(\sigma_{1} - \sigma_{3})^{*}} = \left[\frac{e_{af}}{e_{a}} - 1\right]^{-\frac{1}{v_{I}}}$$
(Eq. 3.21)

e graficamente representada na figura 3.4.

Figura 3.4 Função de sensibilidade invertida em função da deformação natural de desvio na direção axial.

A equação (3.22) estabelece a equação geral deformação versus tensão prépico, expressa através da função de sensibilidade invertida.

$$\frac{e_a}{e_{af}} = \left[1 + \left(\frac{\sigma_1 - \sigma_3}{(\sigma_1 - \sigma_3)^*}\right)^{-\nu_1}\right]^{-1}$$
(Eq. 3.22)

Resolvendo a equação (3.21) em termos da tensão de desvio é estabelecida uma equação geral tensão versus deformação pré-pico, expressa através da função de sensibilidade invertida.

$$\sigma_{1} - \sigma_{3} = (\sigma_{1} - \sigma_{3})^{*} \left[\frac{e_{af}}{e_{a}} - 1 \right]^{-\frac{1}{v_{I}}}$$
(Eq. 3.23)

3.3 Equações gerais para a região pós-pico

3.3.1 Função de dutilidade

Na região pós-pico considera-se que $(\sigma_1 - \sigma_3)$ variará de infinito, para $e_a = 0$, para um valor final $(\sigma_1 - \sigma_3)_{\infty}$, quando $e_a = \infty$. A função própria definida como

$$f^{D}(q) = (\sigma_{1} - \sigma_{3}) - (\sigma_{1} - \sigma_{3})_{\infty}$$
 (Eq. 3.24)

garantirá portanto que a variação de $(\sigma_1 - \sigma_3)$ compreenderá o domínio $[0, \infty)$ quando $0 \le e_a \le \infty$.

Similarmente, da equação geral da proporcionalidade natural (equação 3.4), tem-se

$$e_a f^D(q)^{v_D} = cte$$
 (Eq. 3.25)

onde a constante v_D é referida como expoente de cisalhamento pós-pico.

Substituindo-se a equação (3.24) em (3.25) resulta

$$\frac{e_{a}}{e_{al}} = \left(\frac{f^{D}(q)}{f^{D}(q)_{l}}\right)^{-\nu_{D}} = \left[\frac{(\sigma_{1} - \sigma_{3}) - (\sigma_{1} - \sigma_{3})_{\infty}}{(\sigma_{1} - \sigma_{3})_{l} - (\sigma_{1} - \sigma_{3})_{\infty}}\right]^{-\nu_{D}}$$
(Eq. 3.26)

onde $(\sigma_1 - \sigma_3)_l$ e e_{al} correspondem a valores de tensão e deformação em um ponto conhecido da curva tensão-deformação.

Uma função de dutilidade y_D^e escrita em termos da deformação natural de desvio na direção axial pode ser expressa conforme equação (3.27), graficamente representada pelas curvas da figura 3.5 para vários valores da constante v_D .

$$y_{D}^{e} = \frac{f^{D}(q)}{f^{D}(q)_{l}} = \frac{(\sigma_{1} - \sigma_{3}) - (\sigma_{1} - \sigma_{3})_{\infty}}{(\sigma_{1} - \sigma_{3})_{l} - (\sigma_{1} - \sigma_{3})_{\infty}} = \left(\frac{e_{a}}{e_{al}}\right)^{-\frac{1}{\nu_{D}}}$$
(Eq. 3.27)

Figura 3.5 Função de dutilidade em termos da deformação natural de desvio na direção axial.

Os seguintes casos especiais da função de dutilidade y_D^e podem ser examinados a partir da análise da equação geral (3.27):

a) Caso 1:
$$(\sigma_1 - \sigma_3)_{\infty} > 0$$

$$\frac{\sigma_1 - \sigma_3}{(\sigma_1 - \sigma_3)_{\infty}} = 1 + \left(\frac{e_a}{e_a^*}\right)^{-\frac{1}{\nu_D}}$$
(Eq. 3.28)
com $e^* = e$ para $(\sigma_1 - \sigma_2) = 2(\sigma_1 - \sigma_2)$

com $e_a^* = e_a$ para $(\sigma_1 - \sigma_3) = 2(\sigma_1 - \sigma_3)_{\infty}$

ou,

$$\sigma_1 - \sigma_3 = \left(\sigma_1 - \sigma_3\right)_{\infty} \left[1 + \left(\frac{e_a}{e_a^*}\right)^{-\frac{1}{\nu_D}}\right]$$
(Eq. 3.29)

b) Caso 2: $(\sigma_1 - \sigma_3)_{\infty} = 0$

$$\frac{\sigma_1 - \sigma_3}{(\sigma_1 - \sigma_3)_l} = \left(\frac{e_a}{e_{al}}\right)^{-\frac{1}{v_D}}$$
(Eq. 3.30)

$$\sigma_1 - \sigma_3 = (\sigma_1 - \sigma_3)_l \left(\frac{e_a}{e_{al}}\right)^{-\frac{1}{\nu_D}}$$
(Eq. 3.31)

c) Caso 3:
$$(\sigma_1 - \sigma_3)_{\infty} < 0$$

$$\frac{\sigma_1 - \sigma_3}{(\sigma_1 - \sigma_3)_{\infty}} = 1 - \left(\frac{e_a}{e_{ao}}\right)^{-\frac{1}{v_D}}$$
(Eq. 3.32)

 $\operatorname{com} e_{ao} = \varepsilon_a \text{ quando } (\sigma_1 - \sigma_3) = 0$

ou,

$$\sigma_1 - \sigma_3 = \left(\sigma_1 - \sigma_3\right)_{\infty} \left[1 - \left(\frac{e_a}{e_{ao}}\right)^{-\frac{1}{\nu_D}}\right]$$
(Eq. 3.33)

A função de dutilidade (Eq. 3.27) também pode ser escrita em termos da deformação natural cisalhante η_c , conforme equação (3.33) e graficamente representada pelas curvas da figura 3.6,

$$y_D^{\eta} = \frac{(\sigma_1 - \sigma_3) - (\sigma_1 - \sigma_3)_{\infty}}{(\sigma_1 - \sigma_3)_l - (\sigma_1 - \sigma_3)_{\infty}} = \left(\frac{\eta_c}{\eta_l}\right)^{-\frac{1}{\nu_D}}$$
(Eq. 3.34)

$$(\sigma_{1} - \sigma_{3}) = (\sigma_{1} - \sigma_{3})_{\infty} + [(\sigma_{1} - \sigma_{3})_{l} - (\sigma_{1} - \sigma_{3})_{\infty}] \left(\frac{\eta_{c}}{\eta_{l}}\right)^{-\frac{1}{\nu_{D}}}$$
(Eq. 3.35)

Figura 3.6 Função de dutilidade em termos da deformação natural cisalhante.

$$(\sigma_{1} - \sigma_{3}) = (\sigma_{1} - \sigma_{3})_{\infty} + [(\sigma_{1} - \sigma_{3})_{l} - (\sigma_{1} - \sigma_{3})_{\infty}] \left(\frac{\eta_{c}}{\eta_{l}}\right)^{-\frac{1}{\nu_{D}}} + (\text{Eq. 3.36})$$
$$(\sigma_{1} - \sigma_{3})_{f} \left[1 + \left(\frac{\eta_{c}}{\eta_{c}^{*}}\right)^{-\frac{1}{\nu_{s}}}\right]^{-1}$$

ou, em termos da deformação natural de desvio na direção axial (equações 3.33 e 3.8),

$$(\sigma_{1} - \sigma_{3}) = (\sigma_{1} - \sigma_{3})_{\infty} + [(\sigma_{1} - \sigma_{3})_{l} - (\sigma_{1} - \sigma_{3})_{\infty}] \left(\frac{e_{a}}{e_{al}}\right)^{-\frac{1}{v_{D}}} + (\sigma_{1} - \sigma_{3})_{f} \left[1 + \left(\frac{e_{a}}{e_{a}^{*}}\right)^{-\frac{1}{v_{S}}}\right]^{-1}$$
(Eq. 3.37)

3.4 Equação geral de variação da poropressão

3.4.1 Função de sensibilidade da poropressão

Juárez-Badillo (1999b) sugeriu também a seguinte expressão para determinação da variação da poropressão Δu em ensaios triaxiais convencionais não-drenados com base no princípio da proporcionalidade natural:

$$\Delta u = \Delta \sigma_i + \alpha \sigma_{co} y^e - \alpha_e (\sigma_{eo} - \sigma_{co}) y^e_e$$
 (Eq. 3.38)

onde:

 $\Delta \sigma_i$: acréscimo da tensão normal isotrópica (ou octaédrica)

 σ_{co} : tensão de consolidação inicial

 σ_{eo} : tensão equivalente de consolidação inicial devido ao intertravamento ("*interlocking*") das partículas sólidas

- *y^e*: função de sensibilidade da poropressão em termos da deformação natural de desvio
- y_e^e : função de sensibilidade equivalente da poropressão em termos da deformação natural de desvio
- α : parâmetro de poropressão com $0 \le \alpha \le 1$
- α_e : parâmetro de poropressão com $0 \le \alpha_e \le 1$

As funções de sensibilidade da poropressão y^e e y^e_e têm a seguinte forma geral

$$y^{e} = \left[1 + \left(\frac{e_{a}}{e_{a}^{*}}\right)^{-\beta}\right]^{-1}$$
(Eq. 3.39)

onde a constante β é chamada de expoente de poropressão. A figura 3.7 mostra a variação da função de sensibilidade da poropressão para valores de $\beta \ge 0$.

Figura 3.7 Função de sensibilidade da poropressão em termos da deformação natural de desvio.

A equação (3.38) permite que a tensão confinante efetiva possa ser escrita como

$$\sigma_{3}' = \sigma_{co} - \Delta u = \sigma_{co} - \Delta \sigma_{i} - \alpha \sigma_{co} \left[1 + \left(\frac{e_{a}}{e_{a}^{*}}\right)^{-\beta} \right]^{-1} + \alpha_{e} \left(\sigma_{eo} - \sigma_{co} \right) \left[1 + \left(\frac{e_{a}}{e_{ae}^{*}}\right)^{-\beta_{e}} \right]^{-1}$$
(Eq. 3.40)

$$\sigma_{3}' = \sigma_{co} - \Delta u = \sigma_{co} - \frac{1}{3}(\sigma_{1} - \sigma_{3}) - \alpha \sigma_{co} \left[1 + \left(\frac{e_{a}}{e_{a}^{*}}\right)^{-\beta} \right]^{-1} + \alpha_{e} \left(\sigma_{eo} - \sigma_{co} \left[1 + \left(\frac{e_{a}}{e_{ae}^{*}}\right)^{-\beta_{e}} \right]^{-1} \right]^{-1} \right]$$
(Eq. 3.41)

Similarmente, em termos da deformação natural cisalhante

$$\sigma_{3}' = \sigma_{co} - \Delta u = \sigma_{co} - \frac{1}{3}(\sigma_{1} - \sigma_{3}) - \alpha \sigma_{co} \left[1 + \left(\frac{\eta_{c}}{\eta_{c}^{*}}\right)^{-\beta} \right]^{-1} + \alpha_{e} \left(\sigma_{eo} - \sigma_{co} \left[1 + \left(\frac{\eta_{c}}{\eta_{e}^{*}}\right)^{-\beta_{e}} \right]^{-1} \right]^{-1}$$
(Eq. 3.42)

3.5 Obtenção dos parâmetros do modelo

A obtenção dos parâmetros do modelo de Juárez-Badillo é feita através de um processo de tentativa e erro comparando-se as funções de sensibilidade e de dutilidade com as curvas experimentais determinadas em laboratório.

Com o objetivo de esclarecer o procedimento que requer "imaginação, sensibilidade e experiência" (Juárez-Badillo, 1999b) aplica-se o modelo na interpretação de resultados de dois grupos de ensaios triaxiais não drenados executados por Yamamuro e Lade (1997) na areia de Nevada.

O primeiro caso considera a retroanálise de quatro amostras ensaiadas com o mesmo conteúdo de finos (20% em peso), mas com diferentes densidades relativas (Dr = 26%, 39%, 44% e 48%). Os resultados dos ensaios triaxiais convencionais não drenados estão mostrados na figura 3.8, onde se pode observar a ocorrência de fluxo por liquefação sob carregamento estático para valores de densidade relativa Dr = 26%, 39% e 44%, com rápida diminuição da resistência do material para pequenas deformações axiais ($\varepsilon_a < 5\%$). Todas as amostras foram ensaiadas sob a mesma tensão confinante $\sigma_3 = 25kPa$. Observa-se também da figura 3.8 que para densidade relativa Dr = 48% o comportamento da areia é estável, com o material incrementando a sua resistência após um pequeno patamar onde as deformações ocorreram sob tensão *q* constante. O comportamento das curvas da figura 3.8 evidencia a influência da densidade relativa na ocorrência do fluxo por liquefação.

Para reproduzir a resposta do material mediante a aplicação das equações gerais do modelo de Juárez-Badillo (1999b) faz-se uso das funções pré-pico e póspico, apresentadas anteriormente.

Figura 3.8 Influência da densidade relativa na ocorrência da liquefação monotônica (estática) na areia de Nevada (Yamamuro e Lade, 1997).

Para modelagem das curvas correspondentes a Dr = 26%, 39% e 44% foi utilizada uma combinação da função de sensibilidade invertida y_1 (equação 3.23) e da função normal y_N para $v_N = 1$ (equação 3.16), resultando em

$$\sigma_1 - \sigma_3 = (\sigma_1 - \sigma_3)_f y_N - (\sigma_1 - \sigma_3)^* y_I + cons \tan te$$
 (Eq. 3.43)

$$\sigma_{1} - \sigma_{3} = (\sigma_{1} - \sigma_{3})_{f} \left\{ 1 - \exp\left(\frac{3e_{a}\sigma_{co}}{\mu_{c}(\sigma_{1} - \sigma_{3})_{f}}\right) \right\}$$

$$- (\sigma_{1} - \sigma_{3})^{*} \left[\frac{e_{af}}{e_{a}} - 1\right]^{-\frac{1}{\nu_{i}}} + cons \tan te$$
(Eq. 3.44)

A superposição da equação (3.43) foi escolhida considerando-se que as curvas da figura 3.8 poderiam ser representadas, a menos de uma constante, subtraindo-se da função normal y_N para $v_N = 1$ (figuras A11 a A13 do apêndice A) a função de sensibilidade invertida y_I (figuras A4 a A6 do apêndice A),

Os valores dos parâmetros do solo, após do procedimento de cálculo por tentativa e erro, estão sumarizados nas tabelas 3.1 e 3.2, determinando-se para as 3 curvas analisadas o valor da constante igual a 6 kPa (equação 3.44).

Tabela 3.1. Valores do parâmetro μ_c nas retroanálises com base na função normal.

Amostra	D_r	μ_{a}	$(\sigma_1 - \sigma_3)_f$
	(%)	• 0	(kPa)
1	26	0,0040	6,9
2	39	0,0055	10,0
3	44	0,0068	10,8

Tabela 3.2. Valores do parâmetro v_I nas retroanálises com base na função de sensibilidade invertida.

Amostra	D _r (%)	<i>v_I</i>	e _{af} (%)	$\left(\sigma_1^{}-\sigma_3^{} ight)^*$ (kPa)
1	26	3,00	-10,0	25
2	39	2,70	-18,5	29
3	44	2,45	-19,5	30

Para a modelagem da curva tensão-deformação com Dr = 48%, que não apresentou suscetibilidade à liquefação, considerou-se a superposição da função normal y_N para $v_N \neq 1$ (equação 3.13) com a função de sensibilidade y_S^e (equação 3.8), ambas correspondentes a funções de tipo pré-pico. Esta consideração de incluir funções do mesmo tipo para representar a trajetória total da curva tensãodeformação foi também admitida por Juárez-Badillo (1999b).

$$\sigma_{1} - \sigma_{3} = (\sigma_{1} - \sigma_{3})_{f_{N}} y_{N} + (\sigma_{1} - \sigma_{3})_{f_{S}} y_{S}^{e}$$
(Eq. 3.45)

ou,

$$\sigma_{1} - \sigma_{3} = (\sigma_{1} - \sigma_{3})_{f_{N}} \left\{ 1 - \left[1 + (1 - \nu_{N}) \frac{3e_{a}\sigma_{co}}{\mu_{c}(\sigma_{1} - \sigma_{3})_{f_{N}}} \right]^{\frac{1}{1 - \nu_{N}}} \right\} + (Eq. 3.46) + (\sigma_{1} - \sigma_{3})_{f_{S}} \left[1 + \left(\frac{e_{a}}{e_{a}^{*}}\right)^{-\frac{1}{\nu_{P}}} \right]^{-1}$$

Novamente, a modelagem da areia pela equação (3.45) foi baseada na comparação do comportamento real do solo em laboratório com as tendências observadas nos gráficos da função normal y_N com $v_N \neq 1$ (figuras A7 a A9 do apêndice A) e da função de sensibilidade y_S^e (figuras A1 a A3 do apêndice A). O ajuste dos parâmetros do modelo, por tentativa e erro, resultou nos valores da tabela 3.3.

Amostra	D _r (%)		Parâmetros	
		v_{N} =1,9	$\mu_{c} = 0,0018$	$\left(\sigma_{\scriptscriptstyle 1} - \sigma_{\scriptscriptstyle 3} ight)_{\!\!f_N}$ = 14 kPa
4	48	$V_{P} = 1/3$	$\mathcal{E}_a^* = -5\%$	$\left(\sigma_{\scriptscriptstyle 1} - \sigma_{\scriptscriptstyle 3} ight)_{\! f_{\scriptscriptstyle S}}$ = 18 kPa

Tabela 3.3. Valores dos parâmetros do modelo (equação 3.45) com base na retroanálise da curva experimental para Dr = 48%.

Obs. – No modelo de Juárez-Badillo (1999b) deformações de compressão são admitidas negativas.

A figura 3.9 mostra graficamente a retroanálise do comportamento não drenado das amostras da areia de Nevada pelas equações gerais do modelo de Juárez-Badillo (1999b). Dela observa-se que a modelagem do comportamento pós-pico em certas amostras (Dr = 39%, 44%) é apenas razoável, tendo a vista a dificuldade de se ajustar os valores dos parâmetros do modelo (na realidade um ajuste de curvas) por método de tentativa e erro. Neste sentido, para um ajuste mais exato recomenda-se a utilização de técnicas de otimização.

Figura 3.9 Comparação entre as curvas tensão-deformação experimentais e obtidas por retroanálise.

É importante mencionar que no exemplo anterior para amostras com Dr = 26%, 39% e 44%, Juárez-Badillo (1999b) considerou somente a utilização da função de dutilidade na condição $(\sigma_1 - \sigma_3)_{\infty} < 0$ (equação 3.33). Entretanto, com o emprego de apenas uma única equação, não é possível obter a retroanálise completa, incluindo o trecho pré-pico, razão pela qual, nesta dissertação, optou-se por uma abordagem diferente, com a utilização da equação (3.43).

O segundo caso da retroanálise corresponde às curvas experimentais resultantes dos ensaios de compressão triaxial não drenada realizados por Yamamuro e Lade (1997) em amostras da areia de Nevada (Dr = 12%) considerando tensões iniciais de confinamento $\sigma_{co} = 150$ kPa, 300 kPa e 500 kPa.

Para representar o comportamento das amostras de areia através das equações gerais de proporcionalidade natural, faz-se uso da superposição da função de sensibilidade y_s^e (equação 3.8) e da função de dutilidade pós-pico y_D^e para $(\sigma_1 - \sigma_3)_{\infty} > 0$ (equação 3.28). A escolha destas funções deve-se ao fato de que y_s^e é crescente (figuras A1 a A3 do apêndice A) enquanto a função de dutilidade y_D^e apresenta um trecho inicial crescente seguido por um comportamento decrescente até atingir uma condição última positiva (figuras A14 a A16 do apêndice A).

Figura 3.10 Curvas tensão-deformação da areia de Nevada (Dr = 12%) em ensaios triaxiais não drenados (Yamamuro e Lade (1997).

$$\sigma_{1} - \sigma_{3} = (\sigma_{1} - \sigma_{3})_{\infty} [1 + y_{D}^{e}] + (\sigma_{1} - \sigma_{3})_{f} y_{S}^{e}$$
(Eq. 3.47)

ou,

$$\sigma_{1} - \sigma_{3} = (\sigma_{1} - \sigma_{3})_{\infty} \left[1 + \left(\frac{e_{a}}{e_{aD}^{*}}\right)^{-\frac{1}{\nu_{D}}} \right] +$$

$$(Eq. 3.48)$$

$$(\sigma_{1} - \sigma_{3})_{f} \left[1 + \left(\frac{e_{a}}{e_{aS}^{*}}\right)^{-\frac{1}{\nu_{P}}} \right]^{-1}$$

onde os subscritos D e S servem para diferenciar os parâmetros comuns nas duas parcelas da equação (3.48).

Depois de operações de tentativa e erro para aproximar os resultados experimentais com os previstos pelo modelo, os seguintes parâmetros das tabelas 3.4 e 3.5 foram então determinados.

Tabela 5.4. Valores dos parametros da função de dutilidade						
Amostra	$\sigma_{ m co}$	Va	ϵ^*_{aD}	$(\sigma_1 - \sigma_3)_{\infty}$		
	(kPa)	, D	(%)	(kPa)		
1	150	0,8	-2,5	16		
2	300	0,85	-2,0	39		
3	500	0,9	-1,0	110		

Tabela 3.4. Valores dos parâmetros da função de dutilidade

Amostra	σ_{co}	V _D	ϵ_{aS}^{*}	$(\sigma_1 - \sigma_3)_f$
Amoona	(kPa)	· P	(%)	(kPa)
1	150	0,20	-26,0	310
2	300	0,25	-27,0	410
3	500	0,25	-19,0	450

Tabela 3.5 Valores dos parâmetros para a função de sensibilidade

Obs - No modelo de Juárez-Badillo (1999b) deformações de compressão são admitidas negativas.

A figura 3.11 compara os resultados experimentais com a retroanálise, evidenciando uma concordância bastante satisfatória dos resultados de laboratório com os computados através da equação (3.48).

Figura 3.11 Comparação entre resultados experimentais e previstos pelo modelo de Juárez-Badillo (1999b).

Para simular a variação da tensão confinante efetiva durante o cisalhamento nas amostras de areia de Nevada (Dr = 12%), utiliza-se a equação (3.49):

$$\sigma_{3}' = \sigma_{co} - \Delta u = \sigma_{co} - \frac{1}{3}(\sigma_{1} - \sigma_{3}) - \alpha \sigma_{co} \left[1 + \left(\frac{e_{a}}{e_{a}^{*}}\right)^{-\beta} \right]^{-1} + \alpha_{e} \left(\sigma_{eo} - \sigma_{co} \left[1 + \left(\frac{e_{a}}{e_{ae}^{*}}\right)^{-\beta_{e}} \right]^{-1} \right]^{-1}$$
(Eq. 3.49)

onde os valores de $(\sigma_1 - \sigma_3)$ são obtidos pela equação 3.48 com os parâmetros previamente calculados.

Analisando-se o comportamento geral das curvas experimentais da figura 3.10 e dos gráficos das figuras A14 a A22 do apêndice A, pode-se proceder o cálculo dos parâmetros α , β (tabela 3.6) com base nos trechos iniciais das curvas experimentais ($\varepsilon_a < 5\%$) admitindo-se $\alpha_e = 0$. Os parâmetros restantes (tabela 3.7) podem ser determinados também por tentativa e erro considerando-se o comportamento final das curvas experimentais ($\varepsilon_a > 5\%$).

 $\boldsymbol{\mathcal{E}}_{a}^{*}$ σ_{co} β Amostra α (kPa) (%) 1 150 1 1 -0,60 2 300 0,95 1,2 -0,75 3 500 0,95 0,95 -0,95

Tabela 3.6. Valores dos parâmetros com base no trecho inicial das curvas experimentais.

Tabela 3.7. Valores dos parâmetros com base no trecho final das curvas experimentais

Amostra	$\sigma_{\scriptscriptstyle co}$	$\sigma_{_{eo}}$	$\alpha_{_e}$	$eta_{_e}$	${\cal E}^{*}_{ea}$
	(kPa)	(kPa)			(%)
1	150	750	0,45	0,6	-26,0
2	300	1100	0,53	0,53	-29,8
3	500	1600	0,50	0,50	-22,4

Obs. - No modelo de Juárez-Badillo (1999b) deformações de compressão são admitidas negativas.

A comparação dos valores experimentais e previstos de tensão confinante efetiva é bastante satisfatória, conforme mostra a figura 3.12 para as curvas com diferentes tensões iniciais de consolidação.

No processo de retroanálise observa-se alguma inconsistência na utilização da equação geral (3.41) visto que são necessários dados de outra equação (equação 3.48) com a qual não apresenta nenhuma relação.

Finalmente, a partir dos resultados da figura 3.12 é também possível plotarse os gráficos de variação das poropressões, ilustrados na figura 3.13.

Figura 3.12 Retroanálise da variação da tensão confinante efetiva em amostras da areia de Nevada (Dr = 12%) - Yamamuro e Lade (1997)

Figura 3.13 Variação prevista de poropressão para as amostras da areia de Nevada (Dr = 12%) em ensaios triaxiais de compressão convencional não drenados.